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We analyze the problem of phase coexistence, surface tension and the interface
patterns between liquid and vapour for the nonlocal free energy functional
derived by Lebowitz, Mazel, and Presutti from a system of particles interacting
through Kac potentials in the continuum. We study the sharp interface limit in
d dimensions and characterize the shape of the interface profiles in the temper-
ature region where a monotonicity property is valid. We further extend our
analysis beyond this domain by performing numerical simulations.
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1. INTRODUCTION

In this paper we study properties of interfaces and the sharp interface limit
for a nonlocal functional in d dimensions. The statistical mechanics coun-
terpart of the functional is a particle model analyzed by Lebowitz et al., (21)

and hereafter called the LMP model. This is a system of identical point
particles in the continuum interacting via a two-body attractive Kac
potential and a four-body, repulsive Kac potential. They prove that for a
temperature range T ¥ (T0, Tc) the system exhibits a liquid-vapor phase
transition, thus solving a long standing problem in rigorous Statistical
Mechanics. In the limit when the range of the Kac potentials becomes
infinite, the model is described by a van der Waals free energy functional of
the form:

F(r)=F dr(El(J a r)−b−1S(r)) (1.1)



where b > 0 is the inverse temperature and l ¥ R is the chemical potential,
r(r), r ¥ Rd, is the particle density profile, J(r) \ 0, r ¥ Rd is an even posi-
tive kernel with support in the unit ball and with integral equal to 1, and
‘‘a ’’ denotes the convolution. El is the mean field energy density

El(s)=−ls−
s2

2
+
s4

4!
(1.2)

where the two last terms are remainding respectively of the two-body,
attractive, and four-body repulsive Kac potentials in the underlying LMP
model. S(r) is the entropy density

S(r)=−r(log r−1) (1.3)

The existence of a phase transition of liquid-vapor type is related to
the fact that the global minimizers of the functional are constant functions,
for any value of temperature and chemical potential. For b > bc=(kTc)−1,
there is a unique value of the chemical potential l=lb, for which there are
two distinct minimizers rb, ± , (with rb, − < rb,+). For other values, l ] lb or
b [ bc, the minimizer is unique.

In this paper, we study the sharp interface limit in d \ 2 dimensions
and prove the C-convergence of the excess free energy functional to a
perimeter functional which assigns to an interface “E of a set E … Rd of
bounded variation the free energy cost

H=F
“E
dm sb(n(r)) (1.4)

where dm is the d−1 surface area measure on “E, n(r) is the outward
normal to “E at r (defined almost everywhere); sb(e), |e|=1 is the surface
tension of a flat surface whose normal is e.

Alberti and Bellettini, (1, 2) have proved analogous results for general
anisotropic interactions of ferromagnetic type including the free energy
functionals arising from Ising spin system with ferromagnetic Kac poten-
tials which generalize the first paper on this line of research due to Alberti
et al. (3) These are the papers closer to ours in spirit and techniques, but
there are by now many results on surface tension and Wulff theory for
Ising type models. As the list of references is very long, we just mention
that phase coexistence in two dimensions is fully described, see, for
instance, refs. 15, 18–20, 23, 24 and that there are many results also in
higher dimensions, refs. 6–10 and references therein.
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Besides providing a further example of the generally accepted fact that
H is the thermodynamic excess free energy of an interface, the interest in
deriving (1.4) for the LMP model relies on an important mathematical (and
physical) question about the validity of C-convergence when ferromagnetic-
type inequalities do not hold, inequalities which were key ingredients in the
proofs of Alberti and Bellettini. Our method is based on Peierls estimates
on contours, and should extend to general functionals for which such
estimates are valid; in particular they hold for the functionals associated to
Ising models with ferromagnetic Kac potentials.

The other relevant issue in the definition of H is the identification of
the surface tension. As explained by Alberti and Bellettini, (2) there is no
need to give a priori the surface tension: sb(e) depends on the model and
it is selected by the limiting procedure. Thus it is the sharp interface limit
that identifies the surface tension. In our model as well as in the model
of Alberti and Bellettini it is given by the following expression. Given a
unit vector e ¥ Rd, let consider the rectangular domain Re(L, h)=Te(L)×
[−h, h], where h > 0 and Te(L) is a torus of side L in the orthogonal
complement of e. Then we prove (see Theorems 2.4 and 2.5 in Section 2)
that the excess free energy functional, (see (2.5) later for a definition of F)
C-converges to H with

sb(e)=lim inf
LQ.

lim inf
hQ.

1
Ld−1

inf
r ¥ L.(Re(L, h))

F(r (±, h)) (1.5)

where r (±, h) is defined on the cylinder Ce=Te(L)×R, equal to r in
Re(L, h) and constant and equal to the pure phases densities rb, ± in the
upper, respectively lower, part of the complement of Re(L, h) in the direc-
tion e (see the next section for a precise definition).

Even if the fact that the infimum in (1.5) is a minimum does not play
any role in the derivation of (1.4) it is of course relevant to actually show
the existence of a minimizer (called optimal profile by Alberti and Bellettini)
and to characterize its shape. A natural guess is that the optimal profile is
a function r that depends only on the coordinate along e, r(r)=r̄(r · e),
r ¥ Rd and r̄ is the optimal profile of a one dimensional functional.

Gayrard et al., (17) have proven the existence of the one dimensional
optimal profile r̄ (that they call instanton) for all b ¥ (bc, b0). In addition,
they have shown that there is bg such that for all b ¥ (bc, bg) the minimizer
is unique, strictly increasing and converges to rb, ± exponentially fast. For
b ¥ (bg, b0) any minimizer approaches rb, ± exponentially fast but presents
oscillations when approaching the liquid phase in the sense that the set
{x: r̄(x) > rb,+} … R is made of infinitely many disjoint intervals.
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We prove that for d \ 2 and b ¥ (bc, bg), the minimizers of F depend
only on the coordinate along the axis of the cylinder and that they reduce
to the d=1 optimal profile found in ref. 17, in other words

sb(e)=F(e)(r̄), -b ¥ (bc, bg)

where F (e) is a one dimensional functional defined in (2.10) later. For the
other values of the temperature the validity of the above equality is not
clear at all since nothing excludes the appearance of oscillations also in the
directions orthogonal to e. In order to complete the analysis, we performed
numerical simulations and computed the shape and the excess free energy
of minimizers in two dimensions, for various interaction kernels. We thus
got a strong belief that the same picture as before is valid for values of
b > bg, and that the minimizer is unique (up to translations) and described
by the related one dimensional optimal profile.

2. DEFINITIONS AND RESULTS

We start this section with the precise definition of the excess free
energy functional and recall its basic properties; we also state without
proofs some of the results that Gayrard et al., (17) gave in one dimension
and for particular isotropic kernels but which are however valid in more
generality. Our results are stated after this preliminary part.

Homogenous Solutions

Since > J=1 and > J a S(r)=> S(r) for any function r, we (formally)
rewrite the free energy functional (1.1) as follow

F(r)=F (gb, l(J f r)+b−1{S(J f r)−J f S(r)}) gb, l(s)=El(s)−b−1S(s)

The term in the curly bracket is nonnegative and therefore the global
minima of F are the constants that minimize gb, l. Let bc=(3/2)(3/2) denote
the inverse critical temperature. Then for all b > bc, there is a unique
l=lb such that the functional has two distinct minima, rb, − and rb,+ with
gb, l(rb,+)=gb, l(rb, −), (Fig. 1). In particular, they are solutions of the
following mean field equation,

s=jb(s), jb(s) :=exp{−bEŒ(s)} (2.1)
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where EŒ(s) is the derivative w.r.t. s of Elb (s) defined in (1.2). We denote
by rb, 0 the third solution of (2.1), which is inbetween rb, − and rb,+. The
derivative of jb(s) in a point s solution of (2.1) is

j −b(s)=bjb(s)[1−
1
2 s
2]=bs[1− 12 s

2]

It is not difficult to see that j −b(rb,+) is a strictly decreasing function of b

with value onto (−., 1). We define the two inverse temperatures bg and b0
through the equations:

j −b*(rb*,+)=0, j −b0 (rb0,+)=−1 (2.2)

Those special values of b are related to properties of the evolution
defined in (2.8) later, relevant for the study of the critical points of the free
energy functional. For b ¥ (bc, bg), it behaves just as in the ferromagnetic
case, while for b ¥ (bg, b0), the constant profile r=rb,+ is only stable with
respect to small perturbations. In particular the proof of Proposition 3.2
later strongly uses the positivity of j −b(rb,+).

Noticing that the maximum of jb(s) is reached at s=`2, indepen-
dently of b, we set

Rœ= sup
b ¥ (bc, b0)

jb(`2) (2.3)

and we note that for b > bg, rb,+ ¥ (`2, Rœ). We also define

RŒ= inf
b ¥ (bc, b0)

inf
0 [ s [ Rœ

jb(s) (2.4)

The Excess Free Energy Functional

From now on, we consider a situation of phase coexistence, and thus
take b > bc and fix l=lb. For notational convenience, we often drop b

from the quantities we consider, for instance we write r± — rb, ± .
Following refs. 17 and 21, we define the excess free energy functional

as follows.

F(r)=F
R
d
(f(J a r)+b−1{S(J a r)−J a S(r)}) (2.5)

where

f(s)=gb(s)−gb(r+), gb(s)=gb, lb (s)=Elb (s)−b−1s[log s−1]
(2.6)
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Observe that, as a functional with values in [0,.], F(r) is well defined on
L1loc(R

d, R+). In fact by the Jensen’s inequality the curly bracket on the
right hand side of (2.5) is nonnegative, so that the whole functional is
nonnegative.

Critical Points and Nonlocal Dynamics

The critical points of F(r) are functions that satisfy the following
equation:

r(r)=F(r)(r), F(r)(r) :=exp{−bJ a E −b(J a r)(r)} (2.7)

The solutions of (2.7) are stationary solutions of the following nonlocal
dynamic,

“r

“t
=−r+F(r) (2.8)

We denote by Tt(r) the flow solution of (2.8) with r ¥ L.(Rd, R).
The proof of the following theorem is the same as the one of

Theorem 4.6 of ref. 17.

Theorem 2.1. Recalling the definitions (2.3) and (2.4), Tt(r) is well
defined in L.(Rd, [RŒ, Rœ]) and Tt(r) belongs to L.(Rd, [RŒ, Rœ]) for all t.
Furthermore if r ¥ L.(Rd, [RŒ, Rœ]) is such that F(r) <., then F(Tt(r)) [
F(r) for all t.

From the above result it follows that we may restrict the domain of F
to the functions with values in the interval [RŒ, Rœ].

One Dimensional Functionals and Interfaces

Given a unit vector e ¥ Rd and x ¥ R we set

je(x)=F
e +
dr J(r+xe), e+={r ¥ Rd : r · e=0} (2.9)

and we call F (e) the one dimensional functional with interaction je, namely
(recall (2.6))

F (e)(r)=F
R
dx 1f(je a r)+

1
b
{S(je a r)−je a S(r)}2 (2.10)
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We define

Nb :={r ¥ L.(R, R+) : lim sup
xQ −.

r(x) < rb, 0, lim inf
xQ.

r(x) > rb, 0} (2.11)

Gayrard et al. (17) have completely characterized the value of yb(e)
where

yb(e)= inf
r ¥Nb

F (e)(r) (2.12)

Theorem 2.2 (ref. 17). For any b ¥ (bc, b0) the infimum in (2.12) is
a minimum, and any minimizer r̄b ¥ L.(R, [RŒ, Rœ]) is a solution of (2.7)
with J replaced by je. Moreover r̄b(x)Q rb, ± as xQ±. and the conver-
gence is exponentially fast. For b ¥ (bc, bg) there is a unique solution to
(2.7) [up to translations], hence a unique minimizer, and this is a strictly
increasing function. For b ¥ (bg, b0) and for any minimizer r̄b, the set
{x: r̄b(x) \ rb,+} is made of infinitely many disjoint intervals.

Having set all the preliminaries, we now state our results starting with
those concerning the surface tension.

Definition of Surface Tension

To impose periodic boundary conditions we modify the kernel J as
follows. Given a unit vector e and L > 0 we consider a cube Qe(L) … e+ of
side L (e+ is defined in (2.9)). We introduce the coordinate axes with the
origin in the center of Qe(L) and in this coordinate frame we consider the
cylinder Ce(L)=[−L/2, L/2]d−1×R. Denoting by ei the unit vectors in
the i th direction, i=1,..., d−1, we define

JL(r) := C
k ¥ Z

d−1

J 1 r−L C
d−1

i=1
kiei 2 , r ¥ Ce(L) (2.13)

We then denote by T (L)t (r) the flow solution of (2.8) with JL in place of J
and r ¥ L.(Ce(L), R). We also denote by

Fper(r) :=F
Ce(L)
(f(JL a r)+b−1{S(JL a r)−JL a S(r)}) (2.14)

Observe that the critical points of Fper are solutions of (2.7) with JL in place
of J.
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Given h > 0 we denote by Re(L, h) a rectangular slice of Ce(L) of
height 2h. As before we introduce coordinate axes so that this rectangle can
be written as

Re(L, h)={r=(r1,..., rd) ¥ Rd : |rd | [ h, |ri | [ L/2, i=1,..., d−1} (2.15)

Given a function r ¥ L.(Re(L, h), [RŒ, Rœ]) we define r (±, h) ¥ L.(Ce(L),
[RŒ, Rœ]) as

r (±, h)(r)=˛r(r), if r ¥Re(L, h)

r+1rd \ h+r−1rd < −h otherwise
(2.16)

We finally define the surface tension

sb(e) := lim
LQ.

lim
hQ.

1
Ld−1

inf
r ¥ L.(Re(L, h), [RŒ, Rœ])

Fper(r (±, h)) (2.17)

We then prove the following result.

Theorem 2.3. The limits on the right hand side of (2.17) exist. Let
yb(e), e ¥ Rd, |e|=1 be the function defined in (2.12), then the following
holds. For any b ¥ (bc, b0)

sb(e) [ yb(e) (2.18)

For any b ¥ (bc, bg)

sb(e)=yb(e) (2.19)

We are not able to prove the upper bound for b ¥ (bg, b0) but com-
puter simulations strongly indicate its validity as we are going to explain in
detail in Section 4.

Sharp Interface Limit

The energy H in (1.4) is the macroscopic value of the excess free
energy, this means that the derivation of (1.4) is done in the limit of
vanishing ratio between macro and micro variables. For simplicity we
assume that the domain in macroscopic units is the unit torus T … Rd;
For a scaling parameter e > 0, the microscopic domain is thus e−1T. At
each macroscopic profile u ¥ L.(T, [RŒ, Rœ]) we associate the microscopic
profile u (e) ¥ L.(e−1T, [RŒ, Rœ])

u (e)(r)=u(er), r ¥ e−1T (2.20)
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We then define the scaled free energy Fe with periodic interaction and with
domain L.(T, [RŒ, Rœ]) in the following way,

Fe(r)=F
e
−1

T

(f(J a r (e))+b−1{S(J a r (e))−J a S(r (e))}) (2.21)

canonically imbedded in Rd (recall the definition (2.13)).
A macroscopic state with the two coexisting phases is a function u ¥

BV(T, {r− , r+}). BV(T, {r− , r+}) denotes the set of functions defined in
T with values in {r− , r+} and with bounded variation. (16) Given u as
above we denote by E={r: u(r)=r−} and by m the associated total varia-
tion measure. We recall that there is a set “gE … “E, called essential
boundary, such that the normal n(r) at a point r ¥ “gE is defined m-almost
everywhere. If “E ¥ C1 then “gE=“E and m is the usual d−1 dimensional
area measure. (1, 16)

Given d > 0 and u as above we define

F−(u)=lim
dQ 0

lim inf
eQ 0

( inf
||r−u||L1(T) [ d

ed−1Fe(r)), (2.22)

F+(u)=lim
dQ 0

lim sup
eQ 0

( inf
||r−u||L1(T) [ d

ed−1Fe(r)) (2.23)

The following result is the first step in the proof of the C convergence.

Theorem 2.4. For any b ¥ (bc, b0) and for any u ¥ BV(T,
{r− , r+}) the following holds.

F−(u)=F+(u)=H(u) (2.24)

where

H(u)=F
“*E
dm(r) sb(n(r)) (2.25)

where dm is the measure on “gE associated to u.

To complete the analysis of the C-convergence a compactness property
is needed, this is the content of the following theorem.

Theorem 2.5. If a family of functions {re} … L.(T, [RŒ, Rœ])
satisfies

sup
e > 0

ed−1Fe(re) [ C (2.26)
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then it converges by subsequences in L1 and any limit point is a BV func-
tion with values r±. As a consequence, if u ¨ BV(T, {r− , r+}) then F−(u)
=..

As explained in ref. 1, see Corollary 1.8 there, from (2.24) and
Theorem 2.5 it follows that the minimizers of Fe under a mass constraint
(that is with the integral over T equal to a fixed value c) converge in
L1(T) to the minimizers of H under the same constraint.

The rest of the paper is organized as follows. In Section 3 we prove
Theorem 2.3 and we give other properties of the surface tension. In Sec-
tion 4 we present the computer simulation. In Section 5 we collect all the
Peierls estimates and in Section 6 we prove Theorems 2.4 and 2.5.

3. SURFACE TENSION

In this section we first give the proof of the existence of the surface
tension defined in (2.17) and prove Theorems 2.3. We define

Se(L, h) :=
1
Ld−1

inf
r ¥ L.(Re(L, h), [RŒ, Rœ])

Fper(r (±, h)) (3.1)

The following holds.

Proposition 3.1. For any L > 0, Se(L, h) is a nonincreasing func-
tion of h. For any h fixed Se(L, h) has a limit as LQ. and

lim
hQ.

lim
LQ.

Se(L, h)=sb(e) (3.2)

The proof of the proposition is omitted here since it can be drawn
along the same lines as in Messager et al. (22)3

3 A detailed proof can be found in an extended version of this work, available at the authors’
web page, see, for instance, http://univaq.it/ ’ demasi/.

We consider r̄b one of minimizers of F (e), see Theorem 2.2, and define

qL(r) :=r̄b(rd) qQe(L)
(z), r=(z, rd) ¥Re(L, h) (3.3)

where qA is the characteristic function of the set A. We call q (±, h)L (r),
r ¥ Ce(L) the function equal to qL(r) for r ¥Re(L, h) and equal to r+
(respectively r− ) for rd > h (respectively rd [ h). From Theorem 2.2,
|q (±, h)L (r)−qL(r)| [ ce−cŒh for all |rd | \ h, thus

|Fper(q (±, h)L )−Ld−1F (e)(r̄b)| [ c̄Ld−1e−c̄Œh (3.4)
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which implies that

sb(e) [ yb(e) (3.5)

The second part of Theorem 2.3 requires to show that, for any b ¥ (bc, bg),
qL is the unique minimizer of Fper, i.e.,

inf
r ¥ L.(Re(L, h), [RŒ, Rœ])

Fper(r (±, h)) \ Fper(qL) (3.6)

that, by (3.4) and (3.5), proves (2.19).
The above inequality stems from the analysis of the evolution defined

in (2.8) with JL in place of J, and the fact that the functional decreases
along its solutions. The key step is the following proposition whose proof
strongly uses the Comparison Theorem that holds only for b ¥ (bc, bg).

Proposition 3.2. For any b ¥ (bc, bg) the following holds.
For any r ¥ L.(Re(L, h), [RŒ, Rœ]) there is t ¥ R such that

lim
tQ.
||T (L)t (r

(±, h))−Dt(qL)||.=0, Dt(qL)(r)=qL(r+ted) (3.7)

We postpone the proof of the above proposition and first complete the
proof of Theorem 2.3.

Proof of (3.6). Let {rn}n ¥N … L.(Re(L, h), [RŒ, Rœ]) be any
sequence such that

lim
nQ.
Fper(r (±, h)n )= inf

r ¥ L.(Re(L, h), [RŒ, Rœ])
Fper(r (±, h)) (3.8)

Since Fper is lower semicontinuous (see Proposition 4.5 of ref. 17) and
decreases along the solutions of the evolution, from Proposition 3.2 it
follows that there is sequence of real numbers tn so that

Fper(r (±, h)n ) \ lim inf
tQ.

Fper(T (L)t (r
(±, h)
n )) \ Fper(Dtn (qL))=F

per(qL)

From (3.8) we then get (3.6) and Theorem 2.3 is proved. L

Proof of Proposition 3.2. The proof is the same as the one given in
the course of the proof of Theorem 7.3 of ref. 17. Indeed we face the same
expository problem of Gayrard et al.: the full proof is an adaptation of the
arguments given in the papers of refs. 12–14 that are too long and too
similar to be repeated here.
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The main point is to prove a stability result for the linear evolution

“tu=Wu (3.9)

obtained by linearizing the right hand side of (2.8) around qL. Thus

Wu(r)=−u+br̄b(rd) JL a 351−(je a r̄b)2

2
6 JL a u4 (3.10)

where, with our choice of the coordinate frame,

je(x−xŒ)=F
Qe(L)
dzŒ JL(r−rŒ), r=(z, x), rŒ=(zŒ, xŒ), z ¥ Qe(L), x, xŒ ¥ R

We consider W as an operator in L.(Ce(L), [RŒ, Rœ]) and we observe that

Wq −L=0, q −L(r)=r̄ −b(x) qQe(L)
(z) r=(z, x) (3.11)

r̄ −b denoting the derivative. Thus 0 is an eigenvalue for W with eigenfunc-
tion q −L and we now sketch the proof of the existence of a spectral gap, that
is the proof of (3.12) later. Given u ¥ L.(Ce(L), [RŒ, Rœ]) we denote by

Nu :=F
Ce(L)
dr
q −L(r)

br̄b(rd)
u(r), ũ :=u−Nuq

−

L

Then there are c > 0 and w > 0 such that for all u ¥ L.(Ce(L), [RŒ, Rœ])

||eWtũ||. [ ce−wt ||ũ||. (3.12)

For b ¥ (bc, bg) the square bracket on the right hand side of (3.10) is posi-
tive. Thus, to prove (3.12), we can exploit the fact that W is a Perron
Frobenius operator by defining the transition probability kernel

K(r, rŒ) :=
br̄b(rd)
r̄ −b(rd)

F dz JL(r−z)51−
(je a r̄(zd)2

2
6 JL(z−rŒ) r̄ −b(r

−

d)
(3.13)

and observing that

K=
1
q −L
p [W+1] p q −L, F K(r, rŒ) drŒ=1
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By noticing that the measure

m(dr) :=
q −L(r)

2

br̄b(rd)
dr

is invariant under K, (3.12) is then obtained by showing a fast approach to
equilibrium for the Markov evolution generated by K. Namely the follow-
ing holds. There are c and a positive such that

||q −L[K
n(u−m(u))]||. [ ce−an ||u−m(u)||., m(u)=F m(dr) u(r) (3.14)

By using the Dobrushin’s theory of Gibbs measures at hight temperature it
is possible to show (see refs. 13 and 14 for details) that (3.14) is implied by
the following two properties of K.

There are I and for any s > 0 an integer ks and bs > 0 so that

Kks(r, rŒ) \ bs, for all |r| [ s, and for all rŒ ¥ I (3.15)

There are d ¥ (0, 1) and a > 0 so that for all r

F drŒ K(r, rŒ) w(rŒ) [ dw(r)+a, w=(q −L)
−1 > 0 (3.16)

(3.15) follows from the positivity of K and the fact that the first d−1
coordinates vary in a compact set. The value ks diverges as LQ., but this
does not matter since the stability property is only needed for each fixed
value of L.

To prove (3.16) we observe that since b ¥ (bc, bg) there is s0 so that

0 < p(x) :=br̄b(x) je a 51−(je a r̄b)2

2
6 (x) < 1, for all x \ s0−2

Then (3.16) follows with

d=p(s0−2), a= sup
|x| [ s0 −2

1
r̄ −b(x)

As explained in ref. 17, after the spectral gap, the rest of the proof is
the same as in ref. 13, so we omit the details. The proposition is proved. L
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4. NUMERICAL ANALYSIS

In this section, we report various results obtained by computer simu-
lations. The aim of this part is to get some insight about some aspects of
the nonlocal functional (2.5), which are difficult to study. We first give the
general frame in which this numerical work was done and report results
obtained for various interaction kernels in one and two dimensions.

In order to cast the variational problem to a form easily amenable to
computer simulation, we need both to have some control over the numeri-
cal parameters of the problem at hand, and to introduce a suitable
discretized version of it. The first part can be conveniently provided by the
following elementary mapping which gives an explicit parametrization of
all the parameters, b, lb, r+, and r− , and in particular the phase diagram.

Phase Diagram

We first define two functions g(s) and v(s), s ¥ (0, 1) as,

g(s)=
1
2s

log 11+s
1−s
2−1, v(s)=11+s

2

2
+
s2

3g(s)
2−1/2

Since the function

sQ b(s) :=
3g(s)
s2v(s)3

(4.1)

is strictly increasing from (0, 1) onto (bc,+.), we can parametrize all
quantities in term of s ¥ (0, 1) instead of b ¥ (bc,+.). The other quanti-
ties, lb, r+ and r− are explicit elementary functions of s,

lb=
−v(s)3

3
11+ s

2

g(s)
(1− log[v(s)`1−s2])2 , r±=v(s)(1±s)

In addition, the expression given above shows that the chemical potential
lb < 0.

A first use of the above parametrization consists in the drawing of the
coexistence curve in the density-temperature plane (Fig. 1). The curve is
asymmetric, mean-field like and independent on the interaction kernel.

Discretized Interaction Kernel

We now turn to the discretization scheme. As will be shown below, we
need only to introduce a stepwise constant approximation of the interac-
tion kernel.
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Fig. 1. Liquid-vapor phase diagram in the density-temperature plane for the local mean
field limit of the LMP model.

Given L > 0, we consider a cylinder C(L)=[−L/2, L/2]d−1×R in Rd.
We then take h > 0 such that L and h have commensurable values and
choose E > 0 such that L and h are both integer multiples of E. We finally
consider finite rectangles of C(L), R=R(L, h), as in (2.15), and introduce
a partition of Rd in cubes of mesh E, as follow.

Let BE(x) denote the cube in Rd with center in x and sidelength E,

BE(x)=3y ¥ Rd : −
E

2
[ xi−yi <

E

2
, i ¥ {1,..., d}4 (4.2)

We consider the partition BE={BE(Ek)}k ¥ Z
d of Rd, and its restriction on the

rectangle, BE
R={BE(Ek)}k ¥RE

where RE={k ¥ Zd : Ek ¥R}.
Given an interaction kernel J defined on Rd as in Section 1, we intro-

duce a step-wise constant approximation JE on Rd×Rd as follows:

JE(z, zŒ)=E−d F
BE(0)
J(q(z)−q(zŒ)−z) dz (4.3)

where q(z) is the center of the unique cube in BE which contains z. This
definition breaks the continuous translational invariance of the interac-
tions, so that the kernel JE now depends on two arguments (and not only
on their difference as in the previous sections). JE is positive, has range
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not larger than 1+E, and integral > JE=1. As in the previous sections, we
introduce a periodic extension of the interaction kernel on C(L) defined for
all r, rŒ ¥ C(L) as

JEL(r, rŒ)= C
k ¥ Z

d−1

JE 1 r, rŒ−2L C
d−1

i=1
kiei+1 2 (4.4)

We now consider the functional defined as in Eq. (2.14), with the interac-
tion kernel JE and denote it as F (e, L). We have the following

Proposition 4.1. Recalling the definition (2.16), we consider Fper and
F(e, L) as functionals over L.(R, [RŒ, Rœ]). The minima of F(e, L)(r(±, h)),
r defined in R are constant on each cube of the partition BE

R and we have

lim
EQ 0

inf
r ¥ L.(R, [RŒ, Rœ])

F (e, L)(r (±, h))= inf
r ¥ L.(R, [RŒ, Rœ])

Fper(r (±, h)) (4.5)

Proof. The fact that the functional takes its minima over profiles
which are constant on each cube of the partition BE

R is due to the fact that
JE a r (and hence the energy part of the functional, El(JE a r)) depends
only on the mean of r in each cube,

F drŒ JE(r, rŒ) r(rŒ)= C
k ¥R

e

JE(r, Ek) F drŒ qBE(Ek)(rŒ) r(rŒ) (4.6)

while the entropy term is concave,

F drŒ qBE(Ek)(rŒ) S(r(rŒ)) [ S 1F drŒ qBE(Ek)(rŒ) r(rŒ)2 (4.7)

The second part of the proposition follows from the uniform boundedness
of the profiles. L

The above proposition thus allows us to reduce the functional space to
a finite dimensional one, and all numerical simulations have been done in
this setting.

Numerical Results

The questions to which we want to get some insight concern the exis-
tence and nature of the interfaces for large values of the inverse tempera-
ture b, the nature of the ‘‘transition’’ at bg from monotonous to non-
monotonous profiles, the possible existence of oscillatory pattern in the
direction of the interface (for d \ 2) , and the angular dependance of the
interfacial energy for an anisotropic potential.
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Numerical simulations were done on finite slices R(L, h) of C(L) as in
(2.15) with fixed boundary conditions on the complement t±R(L, h)c. Mini-
mization of free energy was done by a careful iteration of the map:

r Q r(1−a)+aF(r) (4.8)

where a > 0 is taken sufficiently small so that free energy decreases under
iteration. We skip here the technical details relative to the problems of
convergence. In the one dimensional case, except for values of temperature
close to Tc or 0, typical size of the grid h× E−1 % 105 was found already suf-
ficient for our purpose.

• Since the limiting value of b0 for mathematical analysis is essentially
of technical nature and related to the properties of the map r=F(r), no
real change is expected for values b > b0. On the other side, bg has a more
physical meaning since it separates monotonous from nonmonotonous
density profiles. For b > bg, the density profile has oscillations near the
interface in the high density phase. In ref. 17, it was proven that either
there is an infinite number of oscillations, or a finite number separating the
interface from a constant density r+ at finite distance. Numerical simula-
tions were consistent with the first hypothesis (up to machine precision),
but this might depend on the choice of the interaction kernel. We also give
a proof for a particular kernel, J(x)=1

2 1|x| < 1 (see Proposition 4.2 later).
Figure 2 illustrates typical one dimensional profiles for inverse tempera-
tures both below and above bg.
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Fig. 2. Interface density profiles at various temperatures for the interaction kernel J(x)=
1
2 1{|x| < 1}: From left to right: b=2.5; b=5; b=10.
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energy of the pure phases.

• Another question raised in ref. 17 is the nature of the ‘‘transition’’
at bg. We thus computed the excess free energy for various interaction
kernels in the whole range of temperature below Tc (Fig. 3) and it shows no
evidence of any noticeable effect at bg, thus probably ruling out the exis-
tence of a ‘‘secondary phase transition’’ at that point.

• We also investigated two dimensional systems with isotropic and
nonisotropic interaction kernels and look for both the existence of oscilla-
tions in the direction of interface, and the dependance of surface tension on
the interface orientation. In Proposition 3.1, it was proven that for b < bg,
the interface is uniform in all directions perpendicular to the cylinder axis.
This stability result derives from the uniform positivity of the quantity
1−(J a r̄)/2 (see (3.13)). For b > bg, this argument is no longer valid in
the high density phase and one can ask whether spatial oscillation patterns
form at the mesoscopic scale in direction perpendicular to the cylinder axis.
Numerical results indicate that there is a subtle balance between the high
and low density phase contributions to the excess free energy, and that the
former, stabilizing contribution slightly dominates. Interface profiles where
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Fig. 4. Two dimensional interface profile at low temperature (b=25) with uniform
interaction in the unit square. Flat interface remains stable even for values of b much larger
than bg.

thus always found to be homogeneous in the d−1 dimensions perpendi-
cular to the cylinder axis (Fig. 4).

We now consider the variation of the excess free energy with the
orientation of the interface when nonisotropic interaction kernels are con-
sidered. The most typical case can be embodied by the two dimensional
kernel describing uniform interactions inside a domain of elliptic shape. In
such a case the one dimensional projection just amounts to a rescaling of
the interaction range and the excess free energy changes accordingly. Let a
(resp. b) be the major (minor) semiaxis length of the ellipse and h be the
angle between the major axis and the axis of the cylinder C(e). Then, by
using only scaling arguments, it is not hard to show that the excess free
energy F (e) depends on the orientation as

F (e)=fb `a2 cos2(h)+b2 sin2(h) (4.9)

where fb is a constant. The shape of the angular dependance is in this case
completly independant on the model. The above shape is roughly still valid
for kernels with compact support and interaction decreasing with the dis-
tance. Dropping the last condition changes the picture in some way.
However, the stiffness matrix has been always found to be positive definite,
so that no facetting phenomena has been found in the model.
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We conclude this section by proving for a particular kernel, that there
is no instanton constant and equal to r+ on an half line. In ref. 17, it was
proved that for b > bg, the one dimensional instanton in the high density
region converges at least exponentially fast to r+ but has infinitely many
oscillations. The following proposition thus prove in a particular case that
these oscillations extend to the whole high density phase.

Proposition 4.2. Let r be the instanton solution of (2.5) in one
space dimension associated to the interaction kernel

J(x)=1
2 1{|x| < 1} (4.10)

Then r cannot be constant and equal to r+ on a half line.

Proof. The proof relies heavily on the particular choice for the
kernel.

Suppose that such an instanton r exists, and let N be the leftmost
point of the halfline on which r is constant and equal to r+, N=
inf{x ¥ R : r(y)=r+ -y > x}.

We first take the derivative of (2.7), as

rŒ(x)=−br(x)(JŒ a EŒ(J a r))(x)

=− 12 br(x)(EŒ((J a r)(x+1))−EŒ((J a r)(x−1))) (4.11)

In the second line, we made explicitely use of the special choice of the
kernel, and in particular that its derivative is half the difference of two
delta functions in 1 and −1.

Let us suppose x \N. By hypothesis, we have rŒ(x)=0 and
(J a r)(x+1)=r+. Hence (4.11) reduces to

EŒ((J a r)(x−1))=EŒ(r+) -x \N (4.12)

EŒ is not monotonous, but the reciprocal image of EŒ(r+) contains a finite
number of elements. We thus rely on the continuity of EŒ(J a r) as a func-
tion of x to get,

(J a r)(x−1)=r+ -x \N (4.13)

In order to conclude, we can take for instance the derivative of (4.13) and
obtain, r(x−2)=r(x) -x \N. Then r is also constant and equal to r+ on
the interval [N−2, N], in contradiction with the definition of N. L

662 De Masi and Gobron



5. CONTOURS AND PEIERLS ESTIMATES

In this section we give the Peierls estimates on contours that are
needed to prove Theorems 2.4 and 2.5. The proofs of our statements on
contours are already known: some of them are given in ref. 17 for one
dimension, others are similar to estimates given in ref. 21 for the more
complicated particle models. We have learn them from E. Presutti who is
writing the proofs in all details in ref. 25. For the reader convenience we
state the definitions and the results on contours giving only some idea of
the proofs.

We start with the following definitions that are the analogous of the
ones given in ref. 17 in d=1 dimension.

• Partitions and Boundaries. We denote by D (a) a decreasing
sequence of partitions of Rd into cubes of side a, C (a)r denotes the cube of
the partition which contains r ¥ Rd. We say that a region L … Rd is
D (a)-measurable if it is a union of cubes of the partition D (a).

The D (a)-outer boundary of a D (a)-measurable region L, denoted by
daout[L] is the union of all the cubes C of D (a) not in L which are connected
to L (two sets are connected if their closures have nonempty intersection).
The D (a)-inner boundary dain[L] is the D (a)-outer boundary of Lc.

• Coarse-Graining. Given the partition D (a), we define the coarse-
grained image of r ¥ L.(Rd, [RŒ, Rœ]) with grain a

M(a)(r; r)=
1
a
d F
C(a)r
drŒ r(rŒ) (5.1)

• Block Spins. Given z > 0, a < 1 and a profile r ¥ L.(Rd, [RŒ, Rœ])
we define the function g (z, a)(r; r) ¥ {0, 1, −1}, r ¥ Rd as follows. g (z, a)(r; r)
=±1 if |M (a)(r; r)−r± | [ z, otherwise g (z, a)(r; r)=0. We say that
g (z, a)(r; r) is the ‘‘block spin’’ representation of r with grain a and accuracy
z. In the applications z and a are small.

• Correct Points. The correct points are defined in terms of param-
eters z and a− < 1 < a+. Given a function r ¥ L.(Rd, [RŒ, Rœ]) a point
r ¥ Rd is + correct if g (z, a− )(r; rŒ)=1 for all rŒ ¥ C (a+)r 2 da+out[C

(a+)
r ]. The

point is − correct if g (z, a− )(r; rŒ)=−1 for all rŒ ¥ C (a+)r 2 da+out[C
(a+)
r ]. We

say that r ¥ Rd is uncorrect is it is neither+ nor − correct.
Observe that the definition of correct points is such that the coarse

grained image of the profile must be close to r± not only at the given point
but also in a surrounding region, large enough to contain all points within
interaction range.
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In the applications a+ will be much larger than the range of the
interaction. As in ref. 17, we will consider

a > 4; a+=a, a−=a−1 (5.2)

• Contours. The (z, a)-contours of a function r ¥ L.(Rd, [RŒ, Rœ])
are the pairs C=(sp(C), gC), where sp(C), the spatial support of C, is one
of the maximal connected component of {r ¥ Rd : r is uncorrect} and gC is
the restriction to sp(C) of g (z, a− )(r; · ). When sp(C) is a bounded set, we
call c(C) the union of sp(C) and of its internal parts, namely c(C) is the
complement of the unbounded maximal connected component of sp(C)c.
We then define A0=da+out[c(C)], K0=da+in [c(C)]. By definition, gC — 1 or
gC — −1 on K0, in the former case we say that C is a + contour, in the
latter a − contour.

Let L be a bounded, D (a− )-measurable region; given rg ¥ L.(Rd,
[RŒ, Rœ]) we define

XL, r*,+={r ¥M+
z, a− ; L

: rLc=rg
L
c} (5.3)

where rA denotes the function r restricted to the set A and where

M+
z, a− ; L

:={r ¥ L.(Rd, [RŒ, Rœ]) : g (z, a− )(r; r)=1, for all r ¥ L} (5.4)

An analogous definition holds for the − case and since the proofs are
similar, for notational simplicity, we will restrict to the+ case.

In the next theorem we prove that if a− and z are small enough, then
the minimizer of the excess free energy in XL, r*,+, is point-wise close to r+
in L, the closeness being exponential with the distance from the boundaries.

Theorem 5.1. There are z0, w, and cw all positive, so that for any
z < z0, a− < a0(z), the following holds.

For any bounded, D (a− )-measurable region L and any rg such that
g (z, a− )(rg; r)=1, for all r ¨ L at distance less than 4 from the boundary
of L, the following holds.

• There is a unique minimizer k of F( · ), recall (2.5), in XL, r*,+;

• k is the unique solution of the equation

k(r)=exp{−bJ a E −b(J a k)}, r ¥ L

kLc=rg
L
c

(5.5)
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• k is continuous in L with values in (r+−z, r++z), and

|kL(r)−r+| [ cwe−w dist(r, L
c
] ) (5.6)

where Lc]={r ¥ Lc : dist(r, L) [ 1, rg
L
c(r) ] r+)}.

Proof. If r ¥M+
z, a− ; L

then, for a− small enough,

|J a r−r+| [ z+cRœa− [ 2z (5.7)

Furthermore, given any z small enough there is e so that

r+−z [ inf
|s−r+| [ z+e

exp{−bE −b(s)} [ sup
|s−r+| [ z+e

exp{−bE −b(s)} [ r++z

(5.8)

Therefore choosing a0 so that cRœa0 [ e we get

|exp{−bJ a E −b(J a r)}−r+| [ z (5.9)

Let TLt (r) be the solution of

“tr=−r+exp{−bJ a E −b(J a r)}, in L

r(r, 0)=r(r), rLc(r, t)=rg
L
c(r), -t \ 0

(5.10)

We further observe that for r ¥M+
z, a; L, the set XL, r*,+ is TLt invariant,

namely

gz, a(TLt (r), r)=1, -r ¥ L (5.11)

The proof of (5.11) is the same as the one of Lemma 6.2 of ref. 17.
Then, since XL, r*,+ is closed in the topology of the uniform conver-

gence on the compacts, if u ¥XL, r*,+ has finite free energy then TLt (u) con-
verges by subsequences uniformly on the compacts to a function k, see
Proposition 4.7 of ref. 17. It is not difficult to prove that (i) and (ii) below
hold.

(i) The function k ¥X0
L, r*,+ where

X0
L, r*,+={r ¥XL, r*,+ : r=exp{−bJ a E −b(J a r)}, in L} (5.12)

(ii) F(r) \ F(k) for all r ¥XL, r*,+ and the equality holds if and only
if r ¥X0

L, r*,+.
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To prove uniqueness, we assume that there are k ] r+ and f ] r+
both in X0

L, r*,+. Then

|k−f|=|exp{−bJ a E −b(J a f)}− exp{−bJ a E −b(J a k)}| (5.13)

and from (5.9) we know that |k−r+| [ z and |f−r+| [ z, for all r ¥ L.
Therefore, recalling the definition (2.1),

|k(r)−f(r)| [ ( sup
|s−r+| [ 2z

|j −b(s)|) ||k−f||. (5.14)

Since |j −b(r+)| < 1, choosing z small enough, the sup in the bracket on the
right hand side of (5.14) is strictly smaller than 1, which then implies that
f — k.

We are left with the proof of (5.6). We use (5.13) with f — r+ and
setting

e(z) := sup
|s−r+| [ z

|j −b(s)| < 1

we get, for any r ¥ L,

|k(r)−r+|=|exp{−bJ a E −b(J a k)}− exp{−bE −b(r+)}|

[ e(z)5F
L

J(r−rŒ) |k(rŒ)−r+|+F
L
c
J(r−rŒ) |r̄Lc(rŒ)−r+|6

(5.15)

Using (5.15) iteratively, we get,

|k(r)−r+| [ C
.

n=n0(r)
e(z)n 2Rœ

where n0(r) is the biggest integer less than dist(r, Lc] ). This gives (5.6) and
concludes the proof of the theorem. L

The next two theorems are the Peierls estimates needed to prove
Theorem 2.4.

Theorem 5.2. For any z > 0 small enough there is a0(z) > 0 and
for any a \ a0(z)−1 there is c > 0 so that the following holds. Let r ¥

L.(Rd; [RŒ, Rœ]) have a contour C. Then there is a function k equal to r

on c(C)c, equal to r+ on c(C)0K0, with g(k; r)=1 on K0 and such that

F(r) \ F(k)+cz2a−2d |sp(C)| (5.16)
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Proof. Recalling (5.2), we consider S a D (a− )-measurable corridor in
the middle of K0 whose complement is made of two unconnected compo-
nents at mutual distance \ 1, calling D the bounded connected component
of Sc. We also suppose that S has distance \ a/3 from d1in[K0]. By
Theorem 5.1 applied to K0 we can modify r into a new function f, equal to
r outside K0, exponentially close to r+ away from the boundaries, with
g(f; r)=1 on K0 and such that

|f(r)−r+| [ cwe−wa/4, r ¥ daout[D] 2 dain[D] (5.17)

We write

F(f)=F(f; D)+F(f; Dc) (5.18)

where for any region W we have set

F(f; W) :=F
W

(f(J a f)+b−1{S(J a f)−J a S(f)}) \ 0 (5.19)

Since f is equal to r outside K0, f still has C as a contour and, as proved in
ref. 21, see also Theorem 5.1 in ref. 17,

F(f; D) \ cŒz2a−2d |sp(C)| (5.20)

Call k the function equal to f on (D 2 S)c and to r+ elsewhere. Then by
(5.17),

|F(f; Dc)−F(k; Dc)| [ cœ |S| e−wa/4

and since F(k; D)=0,

F(f) \ F(k; D)+F(k; Dc)−cœ |S| e−wa/4+cŒz2a−2d |sp(C)|

By choosing a large enough we then get (5.16). L

As a corollary of Theorem 5.2, if r has n contours Ci, i=1,..., n, then

F(r) \ C
n

i=1
cz2a−2d |sp(Ci)| (5.21)

(5.21) follows by successive applications of (5.16) and recalling that
F( · ) \ 0.
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Theorem 5.2 is also used in the proof of the following theorem:

Theorem 5.3. There are z and a such that the following holds. Let
L and D … L be two bounded, D (a+)-measurable regions; r ¥ L.(Rd,
[RŒ, Rœ]) with g (z, a− )(r; r)=1, r ¥ da+out[L] 2 da+in [L]. Then there is a posi-
tive constant C and a function f in L.(Rd, [RŒ, Rœ]), so that f=r on Lc,
f=r+ on D, g (z, a− )(f; r)=1 on L and, finally, calling

dD={r ¥ D : dist(r, Dc) [ 2}, Lc]={r ¥ Lc, r(r) ] r+, dist(r, Lc) [ 2}
(5.22)

F(r) \ F(f)−C |D| e−w dist(D, L
c
] ) (5.23)

w and cw being the same as in Theorem 5.1.

Proof. By successive applications of Theorem 5.2 we can replace r

by a new function kg with lesser free energy and such that kg=r outside L

and with g (z, a− )(kg : r)=1 inside L. We next use Theorem 5.1 to replace kg

by a function k such that kLc=rLc and (see (5.6))

|kL(r)−r+| [ cwe−w dist(r, L
c
] ), for all r ¥ L (5.24)

F(r) \ F(k) (5.25)

We then define a new function f in the following way

f(r)=r+, for all r ¥ D, fDc=kDc

Then there is a positive constant C so that

F(f)−F(k) \ −C |D| e−w dist(D, L
c
] ) (5.26)

Theorem 5.3 is proved. L

6. C-CONVERGENCE

In this section we study the C convergence of the functional, that is we
prove Theorems 2.4 and 2.5. We fix a function u in BV(T, {r− , r+}) and
we denote by E the set such that

u(r)=r−qE(r)+r+qEc(r) (6.1)

qE is the characteristic function of the set E. We denote by “gE the essen-
tial boundary of E and by dm the associated total variation measure. We
decompose the proof of Theorem 2.4 into two propositions, proving suc-
cessively a lower bound for F−(u) and an upper bound for F+(u).
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Proposition 6.1 (Lower Bound). Let sb(e), |e|=1, be as in (2.17)
and u as above. Then, recalling the definition (2.22),

F−(u) \ F
“*E
dm sb(n(r)) (6.2)

Proof. From the general theory of bounded variation functions, (16)

the set E can be regarded (measure theoretically) as a C1 set. That is for
any a > 0 there are C1 hyper-surfaces S1,...,Sm whose closure are disjoint
from each other, and compact sets K1,..., Km with Ki …Si 5 “gE so that

dm|Ki=dH
d−1, F

“*E
dm− C

m

i=1
F
Ki
dHd−1 [ a (6.3)

where dHd−1 is the surface area. It is not difficult to see that the set E
defined in (6.1) is made of essentially flat parts plus a small remainder.
That is the following holds, see refs. 1 and 3. There are n \ 1 disjoint mea-
surable sets Si, i=1,..., n; and n cubes R i … Rd, i=1,..., n all of side h and
unit vectors ni normal to a face of R i with the following properties. Each
Si is contained in some Kji and denoting by n(r) the unit normal to Si at
r ¥ Si, we have

sup
r ¥ Si

|n(r)− ni | < a, :hd−1−F
Si

dm : < ahd−1 (6.4)

Moreover,

F
Ri
dr |q±Ri −u| < ahd, i=1,..., n; :nhd−1−F

“*E
dm : < a (6.5)

where q±Ri :=r+qR+i +r−qR−i , R±i being the upper and lower halves of R i
with respect to the direction ni.

We denote by q (e)i (r)=q±Ri (er), so that q (e)i is equal to r± resp. on an
upper and lower half of e−1R i.

Let r be such that ||r−u (e)||L1(e −1T) [ e−dd, then by the first inequality
in (6.5),

F
e
−1Ri
dr |r−q (e)i | [ F

e
−1Ri
dr |r−u (e)|+F

e
−1Ri
dr |u (e)−q (e)i |

[ e−d 3d+F
Ri
dr |u−q eRi |
4=: e−d2ahd (6.6)
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having taken d so small that

d < ahd (6.7)

We fix a > 0, take d > 0 so that (6.7) holds and then we let e Q 0 and after
a Q 0.

The main step of the proof is the following cut and paste lemma: there
is a function rg such that

Fe(r) \Fe(rg)−cn(e−1h)d−1`a (6.8)

and with the following properties. For each i there is a rectangle L i strictly
contained in e−1R i with one side directed along ni and length smaller than
2e−1h`a, the precise definition is given in (6.27) later. Calling “±L i the top
and bottom faces of L i in the direction ni, rg(r)=r± for dist(r, “±L i) [ 1,
r ¨ L i.

Let L :=1n
i=1 L i, then recalling the definition (5.19),

Fe(rg)=Fe(rg; Lc)+C
n

i=1
Fe(rg; L i) \ C

n

i=1
Fe(rg; L i) (6.9)

We have

|Fe(rg; L i)−F
per
e (r

g; L i)| [ c`a(e−1h)d−1 (6.10)

where the superfix ‘‘per’’ refers to the free energy with interaction kernel J
made periodic, see (2.13), on the sides of L i (we have then used the bound
on the height of L i stated above). We denote by Ci the infinite cylinder
containing L i and by Fper

e the functional (2.14) with Ci in place of Ce(L).
Since rg is equal to r± around top and bottom of L i,

Fper
e (r

g; L i)=Fper
e (ki) (6.11)

where ki is a function on Ci which is equal to rg on L i and to r± above
and below L i. We then conclude from (6.8)–(6.9)–(6.11) that, for a suitable
constant cŒ

Fe(r) \ C
n

i=1
Fper
e (ki)−cŒn(e

−1h)d−1`a (6.12)

By (2.17),

lim inf
eQ 0

ed−1Fper
e (ki) \ h

d−1sb(ni) (6.13)
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and from the second inequality in (6.4) we get

hd−1sb(ni) \ F
Si

dm sb(ni)−hd−1a (6.14)

while, by the second inequality in (6.5),

nhd−1 [ F
“*E
dm+a (6.15)

Therefore there is cŒ so that

F−(u) \ lim inf
aQ 0

C
n

i=1
[hd−1sb(ni)−chd−1`a]

\ lim
aQ 0

5C
n

i=1
F
Si

dm sb(ni)−cŒ `a6

=F
“*E
dm sb(n(r))

in the last equality we have used the first inequality in (6.4).
We are left with proof of the cut and paste lemma namely the existence

of rg and L i which verify (6.8) and the other properties. This proof is
similar to the ‘‘minimal section argument’’ of Benois et al. (5)

For notational simplicity we denote by Qi — e−1R i and by L — e−1h the
side of Qi. Moreover we assume that the coordinate axes are so that rd is
directed along ni and so that Qi is the coordinate cube, that is

Qi={r=(r1,..., rd) : |rj | [ L/2, -j=1,..., d}

Recalling (6.6), we consider a function r such that ||r−q ei ||L1(Qi) [ aLd and
we fix parameters z and a in such a way that Theorem 5.3 holds. We need
to look for a layer in rd > 0 where r is close to r+ and want also that in the
reflected layer in the bottom, r is close to r− . We choose the layer thick-
ness equal to a+, see (5.2). The k th layer, k ¥ Z, is then (to have lighter
notation we omit the dependence on i in the definition below)

Sk={r ¥ Qi : |rd− a+ k| [ a+/2} (6.16)

Observe that for all k, |Sk |=|S0 |=a+Ld−1, and Qi=1K
k=0 (Sk 2 S−k) where

K is the integer part of L/2a+. Let

N=min 3m ¥N : m \`a
L
2a+
4 (6.17)
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We define for any 1 [ m [N

Sm :=S2m−1 2 S2m 2 S2m+2N−1 2 S2m+2N,

S−m :=S−2m+1 2 S−2m 2 S−2m−2N+1 2 S−2m−2N
(6.18)

Observe that they are mutually disjoint and that |Sm 2 S−m |=8 |S0 |. Let

am=
1
8 |S0 |

F
Sm 2 S−m

dr |r(r)−q ei (r)| (6.19)

We now prove that, for L large enough, i.e., e small enough,

a :=min
m [N

am [`a (6.20)

In fact, by assumption,

aLd \ F
Qi
dr |r(r)−q ei (r)| \ C

N

m=1
8 |S0 | am \ 8 |S0 | Na

then by (6.17), aLd > 8aa+Ld−1`a L/2a+, which proves (6.20).
Call m the integer where the minimum in (6.20) is achieved, so that

F
Sm 2 S−m

dr |r−q ei | [`a 8a+Ld−1

Recalling that C (a− )r is the cube of the partition D (a− ) with contains r, we
define

Cm,+ :={C
(a− )
r … Sm : g (z, a− )(r; r) < 1}

Cm, − :={C
(a− )
r … S−m : g (z, a− )(r; r) > −1}

We then have that

`a 8a+Ld−1 \ F
Sm 2 S−m

dr |r−q ei | \ C
C ¥ Cm,+ 2 Cm, −

F
C
|r−q ei | \ z |Cm,+ 2 Cm, − |

which implies that

|Cm,+ 2 Cm, − | [
8a+

z
Ld−1`a (6.21)
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We further define C (i)0 (L) as the union of all cubes C (a+) such that both
C (a+) and da+out[C

(a+)] are contained in Qi. Notice that, for suitable constants
c and cŒ,

:da+out[C (i)0 (L)] 5 3 0
4N

k=−4N
Sk 4: [ cNLd−2 [ cŒLd−1`a

We then have

Mm, i :=da+out[C
(i)
0 (L)] 2 Cm,+ 2 Cm, − , |Mm, i | [ c̄Ld−1`a (6.22)

We perform the same construction for all i and we define the function

k=r in 50
n

i=1
Mm, i
6c, k=q ei in Mm, i, i=1,..., n

so that from (6.22) we get that there is a constant c0 > 0 so that

Fe(r) \Fe(k)−c0nLd−1`a (6.23)

We next consider the following subsets of Qi,

L+= 0
2m+2N−1

j=2m
Sj 5 C (i)0 (L), L−= 0

−2m−2N+1

j=−2m
Sj 5 C (i)0 (L)

We are going to apply Theorem 5.3 to L+, D+=S2m+N 5 C (i)0 (L) and to
L− , D−=S−2m−N 5 C (i)0 (L). For simplicity we only consider the former.

Since

g (z, a− )(k; r)=1, r ¥ da+out[L+] (6.24)

the conditions on the internal and external boundaries of the domain,
which appear among the hypotheses of Theorem 5.3 are verified. More-
over, recalling (5.22) and the fact that D+=S2m+N 5 C (i)0 (L)

Lc+, ] … S2m−1 2 S2m+2N, dist(D+, L
c
+, ] ) \ a+N/2 (6.25)

Then from Theorem 5.3 it follows that there is fi equal to k outside L ±

and equal to q ei on S2m+N 5 C (i)0 (L) and S−2m−N 5 C (i)0 (L), such that

Fe(k; Qi) \Fe(fi; Qi)−(2cwew |S0 |) e−wa+N/2 (6.26)
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The cut and paste lemma is then proven with

L i= 0
2m+N

j=−2m−N
Sj 5 C (i)0 (L) (6.27)

and rg=fi in L i for all i and rg=r elsewhere.
The proposition is proved. L

For the upper bound we need another property of BV functions that
says that BV sets can be approximated by polyhedral sets. As explained in
Definition 5.1 of ref. 1 a polyhedral set A is an open set whose boundary
“A is contained in the union of finitely many hyperplanes. The faces of A
are the intersection of “A with each one of these hyperplanes and the
normal to “A is defined for all points different from the edge points (i.e.,
points that belong to al least two different faces). Given u ¥ BV let E be as
in (6.1). Then there exists a sequence of BV functions uk equal to r± inside
and outside of polyhedral sets Ek that converges in variation norm as
kQ. to u. Furthermore for any continuous function g(e) defined in the
unit ball, the following holds

lim
kQ.

F
“*Ek
dmk g(n(r))=F

“*E
dm g(n(r)) (6.28)

With this we easily get the upper bound.

Proposition 6.2 (Upper Bound). Let sb(e), |e|=1 be as in (2.17)
and u as above. Then, recalling the definition (2.23),

F+(u) [ F
“*E
dm sb(n(r)) (6.29)

Proof. We will show that there exists r (e) ¥ L1(e−1T, [RŒ, Rœ]),
e > 0, so that

lim
eQ 0

ed ||r (e)−u (e)||L1(e −1T)=0, lim sup
eQ 0

ed−1Fe(r (e)) [ F
“
aE
dm(r) sb(n(r))

(6.30)

which clearly implies (6.29). The choice of r (e) involves a diagonalization
procedure. Let uk be the functions that approximate u and that are equal to
r± inside and outside polyhedral sets Ek with boundary “Ek. For each k,
we will construct functions r (e, L, h, k) so that
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lim sup
hQ 0

lim sup
LQ.

lim sup
eQ 0

ed ||r (e, L, h, k)−u (e)k ||L1(e −1T)=0 (6.31)

lim sup
hQ 0

lim sup
LQ.

lim sup
eQ 0

ed−1Fe(r (e, L, h, k)) [ F
“Ek
dmk(r) sb(n(r)) (6.32)

Since

ed ||u (e)k −u
(e)||L1(e −1T)=||uk−u||L1(T) Q 0, as kQ.

we then get from (6.31) and (6.32)

lim sup
kQ.

lim sup
hQ 0

lim sup
LQ.

lim sup
eQ 0

ed ||r (e, L, h, k)−u (e)||L1(e −1T)=0 (6.33)

lim sup
kQ.

lim sup
hQ 0

lim sup
LQ.

lim sup
eQ 0

ed−1Fe(r (e, L, h, k))

[ lim sup
kQ.

F
“Ek
dmk(r) sb(n(r)) (6.34)

By (6.28),

lim
kQ.

F
“Ek
dmk(r) sb(n(r))=F

“*E
dm(r) sb(n(r)) (6.35)

because sb is a bounded continuous function of the unit normal n. By
(6.33)–(6.35), there are L=L(e), h=h(e), and k=k(e) so that the family
r (e, L(e), h(e), k(e)) satisfies (6.30). Thus the proof of (6.29), follows from the
existence of a family r (e, L, h, k) satisfying (6.31) and (6.32), which we prove
next.

Here k is fixed and we will drop it from the notation, thus writing, in
the sequel, E for a polyhedral set and denoting, as usual, u=r−qE+r+qEc.
The faces of E are called Si, and their normal ni, directed toward the plus
phase. On each hyperplane which contains e−1Si, we introduce a partition
into d−1 dimensional cubes of side L, the orientation of the cubes of the
partition being the same for all e. As already said, we will take LQ. after
e Q 0, with a third parameter, hQ. after e Q 0 and LQ.. We first
define r (e, L, h) around e−1S1. On each rectangle Rn1 (L, h) of height 2h and
mid cross section a cube entirely contained in e−1S1. Recalling the defini-
tion (3.1) and letting r (e, L, h, ±) the function equal to r (e, L, h) inside Rn1 (L, h)
and equal to q ± in Rn1 (L, h)

c, we choose r (e, L, h) so that

1
Ld−1

Fper(r (e, L, h, ±)) [ Sn1 (L, h)+e (6.36)
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When the mid cross section of Rn1 (L, h) is not entirely contained in e−1S1,
we set r (e, L, h)=r± in the part of Rn1 (L, h) which is (vertically, w.r.t. n1)
above and below e−1S1 5Rn1 (L, h). We follow the same rule in the other
faces, except for points (if any) where r (e, L, h) has already been defined. On
the remaining of the space we set r (e, L, h)=u (e).

Once h is fixed, if L is large enough, any rectangle Rni (L, h) at distance
> L from the boundary of e−1Si has no intersection with any of the other
rectangles, then, for a suitable constant c,

ed−1Fe(r (e, L, h)) [C
i
([Sni (L, h)+e] |Si |+cLhe) (6.37)

From Proposition 3.1 and (6.37), (6.32)–(6.33) follow, thus completing the
proof of the upper bound of C-convergence. L

We now prove Theorem 2.5, the arguments we use are similar to the
ones given in ref. 4 and rely on the Peierls estimates given in Section 5.

Proof of Theorem 2.5. Recalling the definition (2.21) of Fe, we
consider a family of functions re ¥ L.(T, [RŒ, Rœ]) that satisfies

sup
e > 0

ed−1Fe(re) [ C (6.38)

Given any z and a that satisfy the hypothesis of Theorem 5.2 at each
element of the family re it corresponds a set of contours C1,..., Cn, (to avoid
heavy notation we do not explicit the dependence on re of n and of the
contours). We define the BV sets

A±e={r ¥ e−1T : r is ± correct} (6.39)

and we let

q(±, e)(r)=qA±e (e
−1r), q (±, e) ¥ BV(T; {0, 1}) (6.40)

From (5.21) and from (6.38) we get there is a positive constant c so that

cz2a−2d C
n

i=1
|sp(Ci)| [Fe(re) [ Ce−d+1 (6.41)

Denoting by P the perimeter functional on BV(T; {0, 1}) (the Hausdorff
area of ‘‘the reduced boundary’’) from (6.41) we get

P(q(±, e)) [ cŒ=(2da+)d−1 c (6.42)
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By compacteness of P, there is a subsequence en and q± ¥ BV(T; {0, 1}),
P(q±) [ cŒ, so that

lim
nQ.
||q(±, en)−q± ||L1=0 (6.43)

Since A+e 2 A−e 2 (1n
i=1 sp(Ci))=e−1T, from (6.41) we get

1 \ F
T

[q(+, e)(r)+q(−, e)(r)] dr \ 1− a
d
+ce (6.44)

and thus,

F
T

[q+(r)+q−(r)] dr=1 (6.45)

To conclude the proof of the theorem it is sufficient to show that

lim
nQ.
||q(±, en)ren −u

(±)||L1=0, u (±)=r±q(±) (6.46)

For notational simplicity, we restrict to the plus case. We now show that
there is a sequence dn Q 0 slowly enough, such that

lim
nQ.

edn F
A+en

5 {|r(en)−r+| \ dn}
|r (en)−r+|=0, r (en)(r)=ren (er) (6.47)

Since |r (en)−r+| [ 2Rœ, it suffices to prove that

lim
nQ.

edn |A
+
en
5 {|r (en)−r+| \ dn}|=0 (6.48)

Recalling the definitions (2.5) since g −b(r+)=0 and g'b(r+) > 0, there are
c > 0 small enough and b > 0 so that

f(s)=gb(s)−gb(r+) \ b(s−r+)2, for all s ¥ (r+− c, r++c)

On the other hand from (5.7) we get that

|J a r (en)(r)−r+| [ 2z, for all r ¥ A+en

Thus choosing z < c we get

f(J a r)(r) \ bd2n, -r ¥ A+e 5 {| |r (en)−r+| \ dn|} (6.49)
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hence

edn |A+e 5 {| |r (en)−r+| \ dn|}| [
edn
bd2n

F
A+e 5 {| |r(en)−r+| \ dn |}

f(J a r (en)) dr

[
edn
bd2n

Fe(r (en))

that proves (6.48) if en/d2n Q 0.
To conclude the proof of the theorem we take u ¨ BV(T, {r− , r+}),

then we suppose by contradiction that F−(u) <., then there is a family
ue ¥ L.(T, [RŒ, Rœ]), so that ue Q u in L1(T) and Fe(u (e))QF−(u). Then
there is C so that ed−1Fe(ue) < C and a subsequence converging in L1(T)
to a function in BV(T, {r− , r+}), against the assumption that u is not
in BV. The theorem is proved. L
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